Interlacing of zeros of Laguerre polynomials of equal and consecutive degree

نویسندگان

چکیده

We investigate interlacing properties of zeros Laguerre polynomials Ln(α)(x) and Ln+1(α+k)(x), α>−1, where n∈N k∈{1,2}. prove that, in general, the these interlace partially not fully. The sharp t-interval within which two equal degree Ln(α+t)(x) are for every each α>−1 is 0−1. Numerical illustrations its breakdown provided.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stieltjes interlacing of zeros of Laguerre polynomials from different sequences

Stieltjes’ Theorem (cf. [11]) proves that if {pn}n=0 is an orthogonal sequence, then between any two consecutive zeros of pk there is at least one zero of pn for all positive integers k, k < n; a property called Stieltjes interlacing. We prove that Stieltjes interlacing extends across different sequences of Laguerre polynomials Ln, α > −1. In particular, we show that Stieltjes interlacing holds...

متن کامل

Interlacing Properties of Real Zeros of General Laguerre Polynomials

L (↵) n (x) for arbitrary real ↵. Such results are well-known in the case ↵ > 1. In the case 2 < ↵ < 1, we use a mixed 3-term recurrence relation to show, for example, that, apart from a single value of ↵, the (all real) zeros of (x + ↵ + 1)L n (x) interlace with those of xL n (x). By studying the changes in interlacing that occur when ↵ decreases through the negative integer values 1, 2, . . ....

متن کامل

Stieltjes Interlacing of Zeros of Jacobi Polynomials from Different Sequences

A theorem of Stieltjes proves that, given any sequence {pn}n=0 of orthogonal polynomials, there is at least one zero of pn between any two consecutive zeros of pk if k < n, a property called Stieltjes interlacing. We show that Stieltjes interlacing extends, under certain conditions, to the zeros of Jacobi polynomials from different sequences. In particular, we prove that the zeros of P n+1 inte...

متن کامل

Convexity of the Extreme Zeros of Gegenbauer and Laguerre Polynomials

Let Cλ n(x), n = 0, 1, . . . , λ > −1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal in (−1, 1) with respect to the weight function (1−x2)λ−1/2. Denote by xnk(λ), k = 1, . . . , n, the zeros of Cλ n(x) enumerated in decreasing order. In this short note we prove that, for any n ∈ IN , the product (λ+1)xn1(λ) is a convex function of λ if λ ≥ 0. The result is applied to obtain some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integral Transforms and Special Functions

سال: 2021

ISSN: ['1476-8291', '1065-2469']

DOI: https://doi.org/10.1080/10652469.2020.1804901